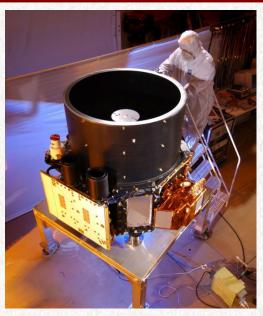
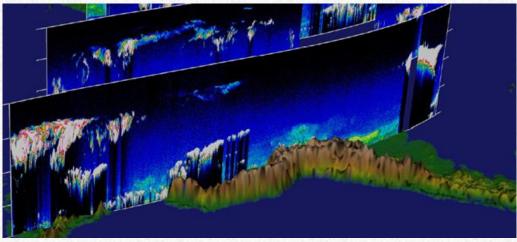
Recent Progress on Lasers for Space-Based Wind, Aerosol, and Altimetry Lidar Systems

Fibertek, Inc. 13605 Dulles Technology Drive Herndon, VA 20171

fhovis@fibertek.com 703-471-7671

Outline




- CALIPSO on orbit performance summary
- Cloud Aerosol Transport System for ISS (CATS/ISS) Status
- ICESat-2 Status
- Overview of the High Efficiency UV Demonstrator (HEUVD) Program
- Laser Design for ATHENA/OAWL

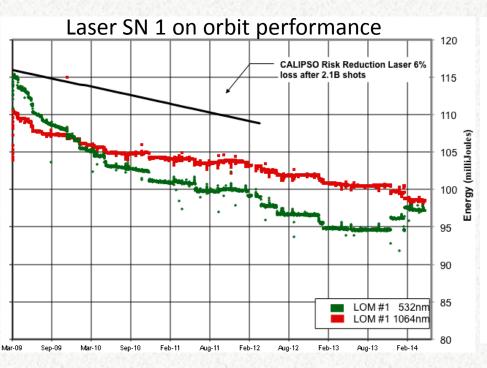
CALIPSO Flight Lasers

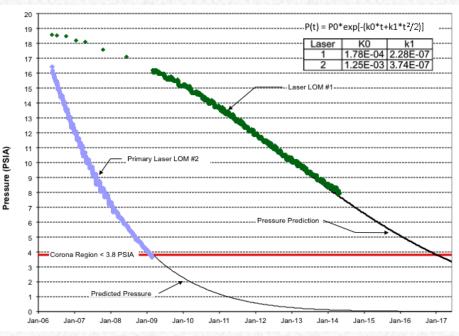
CALIPSO Flight Lasers

Launched 2006

Space-based aerosol measurements

Nd:YAG 20 Hz 110 mJ @1064 and 532 nm


3 yr mission completed with laser SN #2


Laser SN #1 operational for additional 5 years, projected to operate > 7 yr 4.7x10⁹ shots on orbit

Two fully space-qualified laser transmitters and electronics units delivered

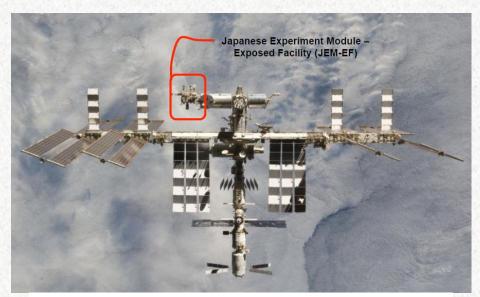
CALIPSO Laser On-Orbit Performance

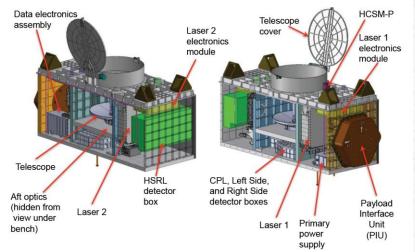
On orbit pressure profiles

Laser SN 2 met 3 year mission life

- Power decay rate was 2.2% per year
- Lifetime limited by slow pressure leak observed before launch

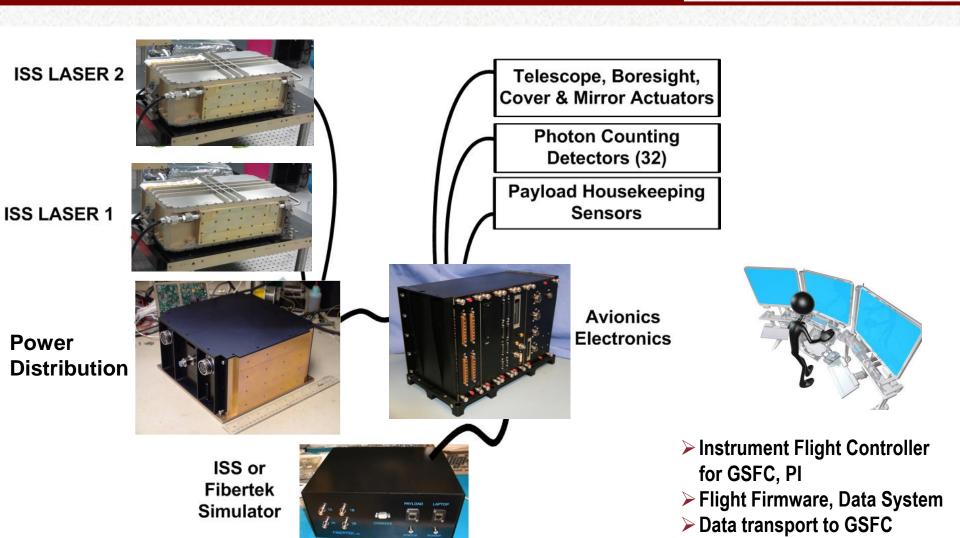
Laser SN 1 still in operation


- Power decay rate has been 2.7% per year
- Current pressure and power decay rates supports operation into 2017


Restart of SN 2 being evaluated

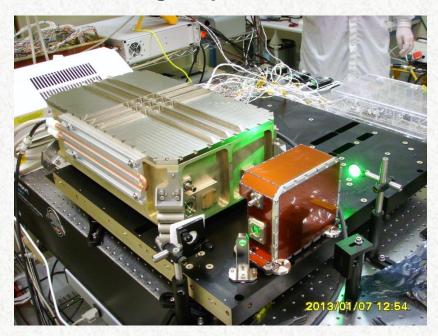
Will be out of low pressure corona region by 2017

Cloud-Aerosol Transport System for ISS



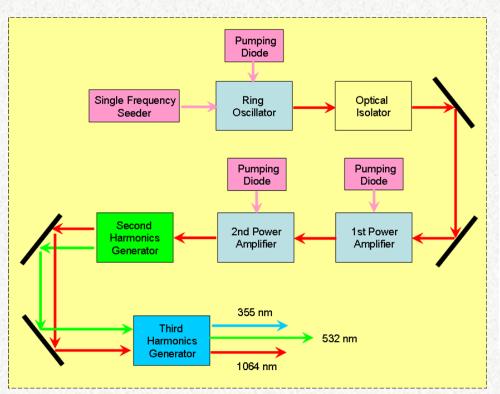
- The Cloud-Aerosol Transport System (CATS) is a LIDAR remote sensing instrument designed to provide rangeresolved profile measurements of atmospheric aerosols and clouds.
- The CATS instrument uses high repetition rate lasers operating at three wavelengths (1064, 532, and 355 nm) to derive properties of cloud and aerosol layers including: layer height, layer thickness, optical depth, extinction, and depolarization-based discrimination of particle type.

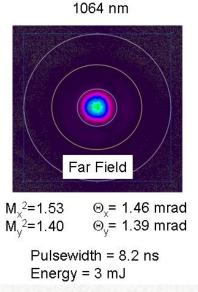
Fibertek CATS-ISS Deliverables

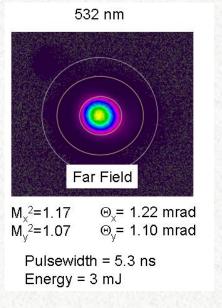


CATS-ISS Laser Systems

Laser #2 Integrated onto the Flight Optical Bench

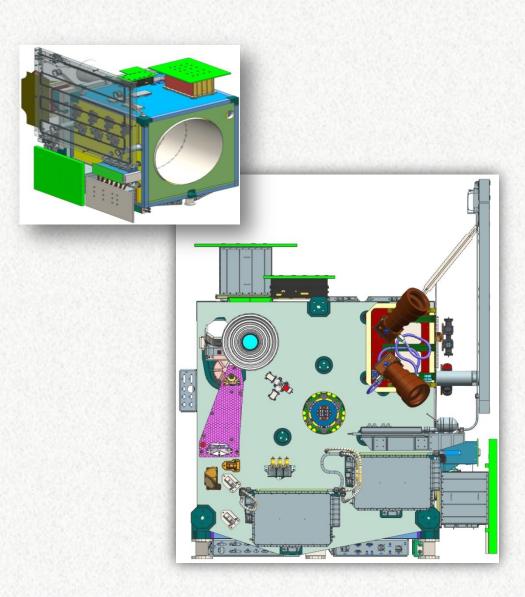

Key Performance Parameters


Parameter	Laser #1	Laser #2
Total Power (W)	27	23.3
Rep Rate (Hz)	5,000	4,000
1064 nm (W)	13	9.4
532 nm (W)	14	4.6
355 nm (W)	NA	9.3
Linewidth (pm)	0.1-0.3	Single- frequency


The combination of average power (~25 W), beam qualities (M² < 1.5), and linewidth are a significant improvement over previous flight missions

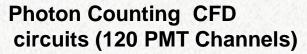
CATS-ISS Laser #2 Performance

CATS laser systems, 2 flight systems, were designed, built, qualified and delivered in a 2 year period.


CATS-ISS Mission Status

- Launch vehicle changed from HTV to SpaceX Dragon capsule
 - Resulted in an increase in predicted random vibration axial loads from 4 g_{rms} to 6.5 g_{rms}
- Full CATS-ISS payload successfully retested at 6.5 g_{rms} in May 2014
- CATS-ISS mission on track for a fall 2014 launch

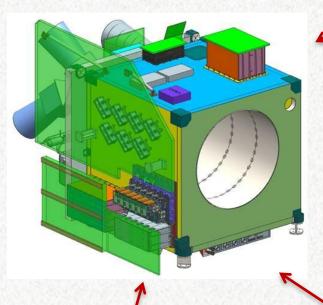
ICESat-2 Mission Overview


The ATLAS instrument is a multi-beam, micropulse, cm class laser altimeter with a dense along-track sampling of 70 cm

Science Objectives:

- Quantifying polar ice-sheet contributions to current and recent sea-level change and the linkages to climate conditions.
- Quantifying regional signatures of ice-sheet changes to assess mechanisms driving those changes and improve predictive ice sheet models.
- Estimating sea-ice thickness to examine ice/ocean/atmosphere exchanges of energy, mass and moisture.
- Measuring vegetation canopy height as a basis for estimating large-scale biomass and biomass change.
- Enhancing the utility of other Earth observation systems through supporting measurements.

Fibertek ICESat-2 Deliverables



Delivery: June 2014

Lasers

Start Pulse Detector Altimeter T_o Signal (Integrate and Test)

Delivery: June 2014

Laser Wavelength Control Electronics (Integrate and Test)

Delivery: May 2014

ICESat-2 Laser Driving Requirements

Driving Requirements

Wall-Plug Efficiency >5 %

Tunable Pulse Energy 250 - 900 µJ

Center Wavelength 532.xxx nm ±15 pm, in vacuum

Wavelength Stability & Linewidth < 30 pm

Mean output wavelength tuning

Mean Pulse Width < 1.5 ns

Repetition Rate 10 ± 0.3 kHz

Polarization Linear 100:1

Spatial Mode 1.6 x diffraction limit [M2 < 1.6]

Shot-to-shot Pointing Stability < 10.8 µrad drift

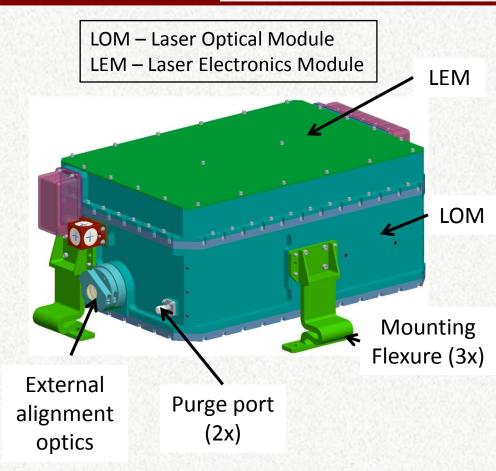
Boresight shift during vibe testing < 200 µrad

Lifetime 3 years + 60 days

Environmental Survival GEVS (14.1 grms qual vibe)

Flight Laser System Packaging Overview

Integrated LOM/LEM with single thermal interface

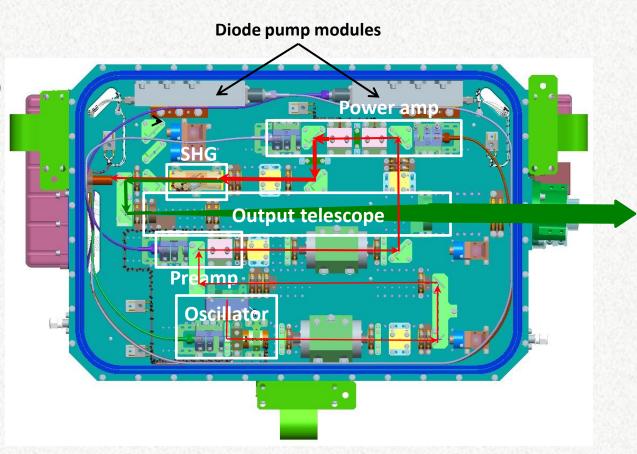

- Mass < 21.6 kg
- <50 cm x 30 cm x 15 cm
- Robust to GEVS random vibe

Wavy flexure mounts

- Filters high-frequency content of GEVS 14.1 g_{rms} random vibe inputs
- Provides short-term & long term pointing stability

Dual compartment LOM with pressure insensitive center plane

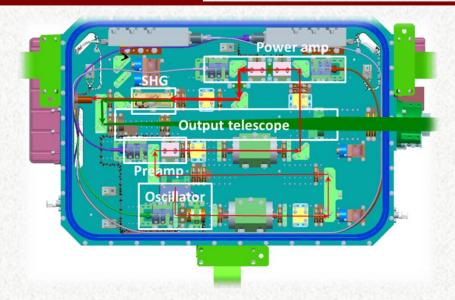
- Allows air pressurization for long optical reliability
- Short term & long term pointing stability



Packaging approach meets key mechanical driving requirements

Flight Optical Configuration

- Fiber-coupled diode pump modules
- Short, electro-optic (E-O)
 Q-switched oscillator
 - 1.3 ns pulse width
 - 100:1 linear polarization
- End-pumped gain medium
 - $M^2 \sim 1.3$
 - Supports 7% wall plug efficiency @ 532 nm
- MOPA configuration
 - 250-900 µJ/pulse
- LBO doubled Nd:YVO4
 - 532 nm
- Internal telescope
 - 10 mm output beam




Frequency doubled Nd:YVO₄ MOPA achieves key optical driving requirements

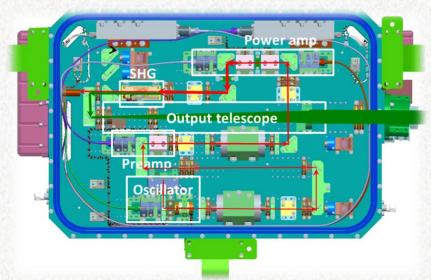
ICESat-2 Laser Design Performance Overview

- Fully redundant lasers and electronics
- Sealed, dual compartment laser canisters
- Air operation better understood & reduces sensitivity to trace contamination
- Master oscillator/power amplifier
 - End-pumped for high beam quality and efficiency
 - Compact EO Q-switched resonator for < 1.5 ns pulse width
 - VBG output coupler provides wavelength tuning
- End pumping achieves wall plug efficiency to 532 nm of 7%
 - 1064 nm Optical-to-Optical efficiency 35%

ICESat-2 Laser Build Status

Integration and Test Laser (qual unit)

- Laser Optics Module (LOM) fully assembled and tested
 - Meets all performance specs with margin
- Laser Electronics Module (LEM) assembled and tested
- Integrated testing of LOM and LEM is ongoing in preparation for qual testing


Flight SN1

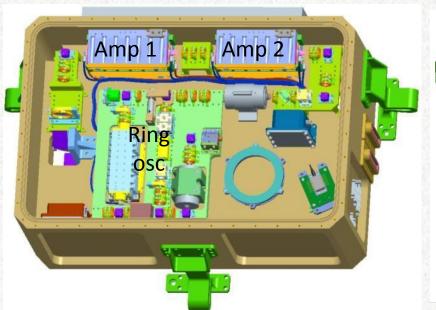
- LOM is built and tested through the output telescope
 - Meets all performance specs with margin
- All LEM boards are built and tested

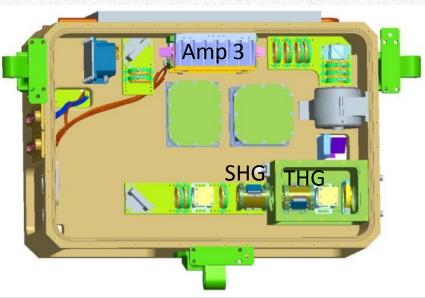
Flight SN2

- LOM is built and tested through the SHG
 - Meets all performance specs with margin
- All LEM boards are built and tested

On track for Q4 2014 deliver of flight units

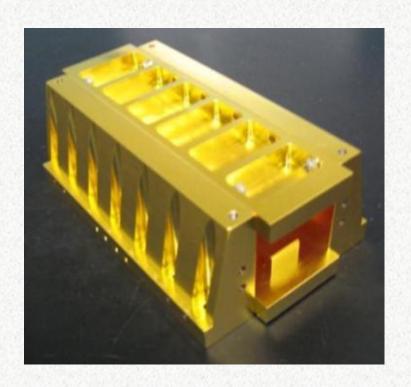
Flight Laser SN1 after flexure installation


High Efficiency UV Demonstrator (HEUVD) Objectives



- ESTO funded development/risk reduction program
- ❖ Improved 1064 nm final power amplifier 750 mJ/pulse @ 50 Hz with an M² < 2</p>
- Purely conductively cooled Laser Optics Module (LOM) design for packaging the 50 Hz, 750 mJ 1064 nm pump laser
- ❖ UV conversion module design with a lifetime of >10⁹ shots that achieves 350 mJ at 355nm
- Advance the design TRL from 4 to 6
- Execute an 8 month life test of the pump laser and UV conversion module

HEUVD Design Overview



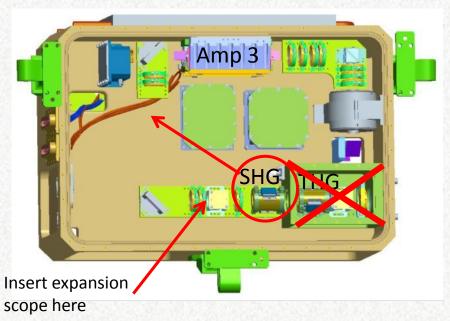
- Flexure-mounted, dual compartment design
- All amplifiers conductively cooled to a single wall
- Ring oscillator and first two amps lifted from HSRL-2
- New final power amplifier design
 - Higher power and beam quality pump on bounce design
- Near polymer free UV conversion module
 - Only polymers are seal o-rings
 - Includes an internal beam expander
- Electronics are a mix of COTS and custom designs

HEUVD Final Power Amplifier Status

Amplifier is assembled and testing is underway

- Probed under full pump load
- Measured small signal gain met expectations
- Currently quantifying focusing and impact on beam quality

Key HEUVD Milestones



- Final boresight over pressure and thermal analyses completed in May 2014
- All parts ordered by late June 2014
- Laser assembly August-November 2014
- Environmental testing (vibe and TVAC) December 2014 through January 2015
- Lifetime testing February-September 2015

ATHENA-OAWL Laser Design

- Essentially HEUVD without the tripler
 - Optimization for 150 Hz operation accomplished with modest changes to the beam conditioning optics
- Final amp will probably change to a second HSRL-2 final amp
 - HEUVD final amp is overkill for required pulse energies
- Doubler will be moved closer to the final power amp
- Pressure insensitive expansion telescope will go into output leg
 - Derived from ICESat-2 design
 - Pressure insensitive

Predicted ATHENA-OAWL laser performance		
Repetition rate (Hz)	150	
Osc. 1064 nm energy (mJ)	7	
Amp #1 1064 nm energy (mJ)	60	
Amp #2 1064 nm energy (mJ)	150	
Amp #3 1064 nm energy (mJ)	280	
532 nm energy (mJ)	180	
Residual 1064 nm (mJ)	100	
532 nm M ²	< 2	
532 nm beam diameter before expansion (mm)	3	
532 nm beam diameter after expansion (mm)	22	
Final beam divergence (µrad)	<150	
532 nm pulse width (ns)	>25 ns	